Predictive CJ

Half the money I spend on advertising is wasted; the trouble is I don’t know which half.

John Wanamaker

Online-Marketing: Datengetriebene Aussteuerung von Werbebannern

mittels Predictive Customer Journey
Task

Ein immer größerer Teil der Online-Werbung wird per Real-Time Bidding (RTB) ausgespielt. Beim RTB werden Werbeflächen im Internet automatisch binnen Millisekunden in einer Auktion versteigert, während ein Benutzer eine Seite lädt. Eine Werbestrategie die dabei alle Nutzer gleichbehandelt, ist wenig effizient und führt zu hohen Streuverlusten. Manche Nutzer besitzen bereits eine sehr hohe Kauf-Affinität, andere haben kaum Interesse an den Dienstleistungen des Werbetreibenden. In beiden Fällen müsste das Werbebudget unterschiedlich eingesetzt werden. Ziel ist es den richtigen Nutzern das richtige Maß an Werbung anzuzeigen. Der Erfolg misst sich dabei an erzielten Verkäufen und schlägt sich in der effizienten und gewinnmaximierenden Nutzung des Werbebudgets nieder.

Data

Grundlage jedes Algorithmus bilden die Daten: Die Datenbasis besteht hier – wie auch bei der Attribution – aus Customer Journey-Daten. Das sind Daten über die Bewegung des Kunden auf der Webseite von seinem ersten Besuch an einer beliebigen Stelle der Webseite bis hin zum Abschluss seiner Bestellung. Idealerweise werden diese Daten durch Off-Site-Kontakte (Kontaktpunkte des potenziellen Kunden außerhalb der eigenen Webseite, z.B. Banner-Werbung, auf die nicht geklickt wurde), Warenkorb-, CRM- und ggf. weitere externe Daten ergänzt. Im ersten Schritt findet eine Selektion der relevanten Merkmale statt. Die Datenmenge ist oft riesig und in den Bits und Bytes ist viel Rauschen enthalten: Das bedeutet, dass die wirklich relevanten Informationen häufig dünn gesät sind. Deswegen benötigt es Erfahrung, um die relevanten Daten zu extrahieren. Nicht selten verfälschen Tracking-Artefakte die Daten. Diese Probleme müssen identifiziert und behoben werden, bevor die eigentliche Analyse beginnt.

Analytics

Die Daten werden zunächst in einen Trainings- und einen Testdatensatz aufgeteilt. Ersterer wird genutzt um mittels statistischer Regressionsmodelle den Wirkungszusammenhang zwischen den vorliegenden Metriken und dem Kaufverhalten der einzelnen Kunden zu bestimmen. Mit „Kaufverhalten“ ist konkret die Wahrscheinlichkeit, dass der Kunde innerhalb eines bestimmten Zeitrahmens einen Kauf tätigen wird, gemeint. Die Wirkungszusammenhänge werden mithilfe des Testdatensatzes validiert, d.h. es wird bestimmt wie gut das Modell bei der Vorhersage von neuen Daten abschneidet. Dies geschieht durch einen Vergleich der auf dem Testdatensatz vorhergesagten Kaufwahrscheinlichkeiten mit den tatsächlich beobachteten Käufen des Testdatensatzes. Die Performance des Modells bei neuen Daten (sog. Out-of-Sample-Güte) wird im Folgenden optimiert. In einem letzten Schritt werden die Kaufwahrscheinlichkeiten in verschiedene Segmente eingeteilt, zum Beispiel in die Segmente 1 (stark unterdurchschnittliche Kaufwahrscheinlichkeit) bis 5 (stark überdurchschnittliche Kaufwahrscheinlichkeit). Dann ist das Modell einsatzbereit.

Solution

INWT hat einen Algorithmus entwickelt, der in Echtzeit die Kaufwahrscheinlichkeit für einen konkreten Internetnutzer bestimmt und darauf die Aussteuerung der Gebote erlaubt. Die durch diesen PCJ-Algorithmus ermöglichte differenzierte Werbestrategie nach Kaufwahrscheinlichkeit erhöht die Effizienz von Werbekampagnen erheblich. Das Budget kann gezielt dort eingesetzt werden, wo das Werbemittel tatsächlich wirkt und Käufe initiiert werden. Streuverluste durch zu viel oder zu wenig Werbung werden minimiert. Unser Modell wird individuell an unsere Kunden angepasst, so dass es auf das Verhalten der Nutzer, den Internetauftritt des Kunden und seine Werbestrategie optimiert ist. Genau in dieser Anpassbarkeit liegt eine wesentliche Stärke des Ansatzes, der zu einer Performance führt, die mit Standardmodellen nicht erreicht werden kann.

Die folgende Abbildung zeigt die Leistungsstärke des von INWT entwickelten Algorithmus im Vergleich zum aktuellen Industriestandard. In einem randomisierten A/B Test wurde ermittelt, wie bei identischem Werbebudget eine Steigerung der Conversions durch den Einsatz des PCJ Algorithmus erzielt werden kann. Bereits die Anzahl der Werbeeinblendungen (AdImpressions) konnte bei gleichem finanziellen Aufwand um 22% erhöht werden. Der Grund: Der INWT-Algorithmus identifiziert auch Kunden als kaufaffin, die konkurrierende Anbieter fälschlicherweise als uninteressant einstufen und für die das Ausspielen von Werbung vergleichsweise günstig ist. Die Stärke des INWT-Algorithmus zeigt sich schließlich in der um 24% höheren Anzahl an Verkäufen (Conversions), die sich für den Werbetreibenden unmittelbar bezahlt machen.

Anmerkung: Sind ausreichend historische Daten vorhanden, lässt sich nicht nur die Kauf-Affinität selbst, sondern zusätzlich die Veränderung der Kaufwahrscheinlichkeit durch die Einblendung von Werbung (also den Effekt der Werbung) berechnen. So kann beispielsweise Werbung bei Kunden vermieden werden, die eine so hohe Affinität zum Kauf aufweisen, dass sie auch ohne Werbeeinblendung kaufen.